Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

نویسندگان

  • Eetu Puttonen
  • Anttoni Jaakkola
  • Paula Litkey
  • Juha Hyyppä
چکیده

Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

Use of Hyperspectral and Laser Scanning Data for Urban Material Mapping: Comparison of a Pixel-based and an Object-based Classification Approach

Urban areas are characterised by a high heterogeneity of surfaces. In the context of urban surface mapping, hyperspectral imagery proved to be a valuable data source in discriminating different materials. However, there are limitations in the identification of urban surface material types. These are e.g. caused by the fact that some surfaces consist of spectrally similar materials (like street ...

متن کامل

Roof Surface Classification with Hyperspectral and Laser Scanning Data – An Assessment of Spectral Angle Mapper and Support Vector Machines

The urban environment is characterised by a variety of different surface materials. For the discrimination of urban materials, hyperspectral imaging proved a valuable tool. In this study, two methods for classification, Spectral Angle Mapper and Support Vector Machines, are compared on a hyperspectral dataset to derive a detailed map of roof materials. Spectral similarity of different materials...

متن کامل

Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data

Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on...

متن کامل

The Benefits of Terrestrial Laser Scanning and Hyperspectral Data Fusion Products

Close range hyperspectral imaging is a developing method for the analysis and identification of material composition in many applications, such as in within the earth sciences. Using compact imaging devices in the field allows near-vertical topography to be imaged, thus bypassing the key limitations of viewing angle and resolution that preclude the use of airborne and spaceborne platforms. Terr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011